Exercise 55

If $f(x)=\llbracket x \rrbracket+\llbracket-x \rrbracket$, show that $\lim _{x \rightarrow 2} f(x)$ exists but is not equal to $f(2)$.

Solution

Below are the graphs of $\llbracket x \rrbracket$ and $\llbracket-x \rrbracket$ superimposed.

With this, the graph of $f(x)$ can be drawn.

Since the left-hand and right-hand limits are both equal,

$$
\lim _{x \rightarrow 2^{-}} f(x)=-1 \quad \text { and } \quad \lim _{x \rightarrow 2^{+}} f(x)=-1
$$

the limit of $f(x)$ as $x \rightarrow 2$ exists:

$$
\lim _{x \rightarrow 2} f(x)=-1
$$

However, it's not equal to $f(2)=0$.

