Exercise 55

If $f(x) = \llbracket x \rrbracket + \llbracket -x \rrbracket$, show that $\lim_{x \to 2} f(x)$ exists but is not equal to f(2).

Solution

Below are the graphs of $\llbracket x \rrbracket$ and $\llbracket -x \rrbracket$ superimposed.

With this, the graph of f(x) can be drawn.

Since the left-hand and right-hand limits are both equal,

 $\lim_{x \to 2^{-}} f(x) = -1 \text{ and } \lim_{x \to 2^{+}} f(x) = -1,$

$$\lim_{x \to 2} f(x) = -1.$$

However, it's not equal to f(2) = 0.